skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lepoint, Tancrède"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Federated Learning (FL) enables multiple clients to collaboratively train a machine learning model while keeping their data private, eliminating the need for data sharing. Two common approaches to secure aggregation (SA) in FL are the single-aggregator and multiple-aggregator models. This work focuses on improving the multiple-aggregator model. Existing multiple-aggregator protocols such as Prio (NSDI 2017), Prio+ (SCN 2022), Elsa (S&P 2023) either offer robustness only in the presence of semi-honest servers or provide security without robustness and are limited to two aggregators. We introduce Mario, the first multipleaggregator Secure Aggregation protocol that is both secure and robust in a malicious setting. Similar to prior work of Prio and Prio+, Mario provides secure aggregation in a setup of n servers and m clients. Unlike previous work, Mario removes the assumption of semi-honest servers, and provides a complete protocol with robustness under malicious clients and malicious servers. Our implementation shows that Mario is 3.40× and 283.4× faster than Elsa and Prio+, respecitively 
    more » « less
    Free, publicly-accessible full text available July 3, 2026